Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.670
Filtrar
1.
Microb Cell Fact ; 23(1): 100, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566071

RESUMO

Surfactin is a cyclic hexalipopeptide compound, nonribosomal synthesized by representatives of the Bacillus subtilis species complex which includes B. subtilis group and its closely related species, such as B. subtilis subsp subtilis, B. subtilis subsp spizizenii, B. subtilis subsp inaquosorum, B. atrophaeus, B. amyloliquefaciens, B. velezensis (Steinke mSystems 6: e00057, 2021) It functions as a biosurfactant and signaling molecule and has antibacterial, antiviral, antitumor, and plant disease resistance properties. The Bacillus lipopeptides play an important role in agriculture, oil recovery, cosmetics, food processing and pharmaceuticals, but the natural yield of surfactin synthesized by Bacillus is low. This paper reviews the regulatory pathways and mechanisms that affect surfactin synthesis and release, highlighting the regulatory genes involved in the transcription of the srfAA-AD operon. The several ways to enhance surfactin production, such as governing expression of the genes involved in synthesis and regulation of surfactin synthesis and transport, removal of competitive pathways, optimization of media, and fermentation conditions were commented. This review will provide a theoretical platform for the systematic genetic modification of high-yielding strains of surfactin.


Assuntos
Bacillus , Bacillus/genética , Bacillus/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Óperon , Fermentação , Lipopeptídeos , Peptídeos Cíclicos
2.
Environ Geochem Health ; 46(5): 159, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592645

RESUMO

In recent years, low-density polyethylene (LDPE) has emerged as an essential component of the routine tasks that people engage in on a daily basis. However, over use of it resulted in environmental buildup that contaminated aquatic habitats and human health. Biodegradation is the most effective way for controlling pollution caused by synthetic plastic waste in a sustainable manner. In the present study, the LDPE degrading bacterial strain was screened from gut of Earthworms collected from plastic waste dumped area Mettur dam, Salem district, Tamil Nadu, India. The LDPE degrading bacterial strain was screened and identified genotypically. The LDPE degrading Bacillus gaemokensis strain SSR01 was submitted in NCBI. The B. gaemokensis strain SSR01 bacterial isolate degraded LDPE film after 14 days of incubation and demonstrated maximum weight loss of up to 4.98%. The study of deteriorated film using attenuated total reflection-Fourier transform infrared revealed the presence of a degraded product. The degradation of LDPE film by B. gaemokensis strain SSR01 was characterized by field-emission scanning electron microscopy analysis for surface alterations. The energy dispersive X-ray spectroscopy test confirmed that the broken-down LDPE film had basic carbon reduction. The present study of LDPE flim biodegradation by B. gaemokensis strain SSR01 has acted as a suitable candidate and will help in decreasing plastic waste.


Assuntos
Bacillus , Oligoquetos , Humanos , Animais , Polietileno , Índia , Biodegradação Ambiental
3.
Arch Microbiol ; 206(5): 222, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642140

RESUMO

Animal feed is vulnerable to fungal infections, and the use of bio-preserving probiotics has received increasing attention. In contrast to Lactobacillus and Bifidobacteria spp., fewer Bacillus spp. have been recognized as antifungal probiotics. Therefore, our objective was to screen antifungal strains and provide more Bacillus candidates to bridge this gap. Here, we screened 56 bacterial strains for cyclic lipopeptide genes and conducted an antifungal assay with Aspergillus niger as a representative fungus. We found that a Bacillus strain Bacillus amyloliquefaciens PM415, isolated from pigeon manure, exhibited the highest fungal inhibition activity as demonstrated by the confrontation assay and morphological observation under scanning electron microscope (SEM). Preliminary safety assessment and probiotic characterization revealed its non-pathogenic feature and stress tolerance capability. Whole genome sequencing of Bacillus amyloliquefaciens PM415 revealed a genome size of 4.16 Mbp and 84 housekeeping genes thereof were used for phylogenetic analysis showing that it is most closely related to Bacillus amyloliquefaciens LFB112. The in silico analysis further supported its non-pathogenic feature at the genomic level and revealed potential biosynthetic gene clusters responsible for its antifungal property. RNA-seq analysis revealed genome-wide changes in transportation, amino acid metabolism, non-ribosomal peptides (NRPs) biosynthesis and glycan degradation during fungal antagonism. Our results suggest that Bacillus amyloliquefaciens PM415 is a safe and effective probiotic strain that can prevent fungal growth in animal feeds.


Assuntos
Bacillus amyloliquefaciens , Bacillus , Probióticos , Animais , Bacillus amyloliquefaciens/química , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Filogenia
4.
Arch Microbiol ; 206(5): 213, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616201

RESUMO

Mulberry bacterial wilt disease, caused by Ralstonia pseudosolanacearum, is a devastating soil-borne disease in the silk-mulberry-related industry. In this study, through high-throughput sequencing, we compared the rhizosphere bacterial composition of the mulberry-resistant cultivar (K10) and susceptible cultivar (G12), confirming Bacillus as a genus-level biomarker for K10. Next, twelve Bacillus spp. isolates, derived from the rhizosphere of K10, were screened for their antagonistic activity against R. pseudosolanacearum. The isolate showing strong antagonism was identified as B. velezensis K0T24 and selected for further analysis. The fermentation supernatant of B. velezensis K0T24 significantly inhibited the growth of R. pseudosolanacearum (82.47%) and the expression of its pathogenic genes. Using B. velezensis K0T24 in mulberry seedlings also increased defense enzyme activities and achieved a control efficacy of up to 55.17% against mulberry bacterial wilt disease. Collectively, our findings demonstrate the potential of B. velezensis K0T24 in suppressing mulberry bacterial wilt disease.


Assuntos
Bacillus , Infecções Bacterianas , Morus , Bactérias , Bacillus/genética
5.
Mol Biol Rep ; 51(1): 504, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616219

RESUMO

BACKGROUND: Mycobacterium leprae causes leprosy that is highly stigmatized and chronic infectious skin disease. Only some diagnostic tools are being used for the identification M. leprae in clinical samples, such as bacillary detection, and histopathological tests. These methods are invasive and often have low sensitivity. Currently, the PCR technique has been used as an effective tool fordetecting M. leprae DNA across different clinical samples. The current study aims to detect M. leprae DNA in urine samples of untreated and treated leprosy patients using the Rlep gene (129 bp) and compared the detection among Ridley-Jopling Classification. METHODS: Clinical samples (Blood, Urine, and Slit Skin Smears (SSS)) were collected from leprosy and Non-leprosy patients. DNA extraction was performed using standard laboratory protocol and Conventional PCR was carried out for all samples using Rlep gene target and the amplicons of urine samples were sequenced by Sanger sequencing to confirm the Rlep gene target. RESULTS: The M. leprae DNA was successfully detected in all clinical samples across all types of leprosy among all the study groups using RLEP-PCR. Rlep gene target was able to detect the presence of M. leprae DNA in 79.17% of urine, 58.33% of blood, and 50% of SSS samples of untreated Smear-Negative leprosy patients. The statistical significant difference (p = 0.004) was observed between BI Negative (Slit Skin Smear test) and RLEP PCR positivity in urine samples of untreated leprosy group. CONCLUSION: The PCR positivity using Rlep gene target (129 bp) was highest in all clinical samples among the study groups, across all types of leprosy. Untreated tuberculoid and PNL leprosy patients showed the highest PCR positivity in urine samples, indicating its potential as a non-invasive diagnostic tool for leprosy and even for contact screening.


Assuntos
Bacillus , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Pele , Firmicutes , Reação em Cadeia da Polimerase
7.
Curr Microbiol ; 81(5): 128, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580768

RESUMO

Endophytic bacteria serve as a rich source of diverse antimicrobial compounds. Recently, there has been a growing interest in utilizing endophytic Bacillus spp. as biological agents against phytogenic fungi, owing to their potential to produce a wide range of antimicrobial substances. The objective of this research was to investigate the protective abilities of 15 endophytic Bacillus spp. isolated from previous study from wheat plant, against the phytopathogenic fungi, Fusarium graminearum and Macrophomina phaseolina. A dual culture plate assay was conducted as a preliminary analysis, revealing that 7 out of 15 endophytic Bacillus spp. demonstrated inhibition against one or both of the phytopathogenic fungi used in this study. All seven endophytes were further assessed for the presence of diffusible antifungal metabolites. The cultures were grown in potato dextrose broth for 120 h, and the cell-free supernatant was extracted and analyzed using the cup plate method. The methanolic extract yielded similar results to the dual culture plate analysis, except for WL2-15. Additionally, deformities in the mycelial structure were examined under the light microscope upon exposure to methanolic extract. Furthermore, the analysis and identification of metabolites were carried out via gas chromatography-mass spectrometry of methanolic extract from selected seven endophytic Bacillus spp. The chromatogram revealed the presence of some major peaks such as tridecanoic acid, methyl ester, hydroperoxide, 1-methylbutyl, 9-octadecenamide, (z)-, hexane-1,3,4-triol, 3,5-dimethyl- tetradecanoic acid. To the best of our knowledge, this is the first report of these biocontrol agents in endophytic Bacillus spp. Interestingly, volatile organic compound production was also seen in all the isolates against the phytopathogenic fungi.


Assuntos
Anti-Infecciosos , Bacillus , Antifúngicos/química , Bacillus/metabolismo , Fungos/metabolismo , Anti-Infecciosos/metabolismo , Bactérias/metabolismo , Extratos Vegetais/metabolismo , Endófitos
8.
Curr Microbiol ; 81(5): 132, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592497

RESUMO

Abiotic stresses threaten the strategic crops of Poaceae (Gramineae) worldwide. Habitat-adapted microbiome of wild plants has the potential to alleviate abiotic stresses in alternate hosts. Persian Gulf's coastal deserts are colonized by halophyte plants hosting habitat-adapted halophytic microbiota. Here, endophytic bacteria from wild Poaceae in coastal deserts of the north Persian Gulf at Hormozgan province, Iran, were isolated and screened for mitigating salinity stress in wheat. Accordingly, seven dominant species of wild Poaceae in the region, i.e., Aeloropus lagopoides, Aeloropus litiralis, Chrysopogon aucheri, Cymbopogon olivieri, Desmostachya sp., Halopayrum mucronatum, and Sporbuls arabicus, were explored. In total, 367 endophytic bacteria were isolated, 90 of which tolerated 2.5-M NaCl. Of these, 38 strains were selected based on their bioactivity and applied for in vitro wheat-interaction assays under 250-mM NaCl stress. Five superior strains promoted seed germination and growth indices in rain-fed winter wheat cv. Sardari, i.e., Bacillus subtilis B14, B19, & B27, Bacillus sp. B21, and Bacillus licheniformis Ba38. In planta assays in saline soil (2.7 dS m-1) using the superior strains indicated that Bacillus sp. B21 and Bacillus licheniformis Ba38 increased germination and root and shoot lengths and their dry and fresh weights in wheat seedlings. Moreover, phenolics and flavonoids contents of wheat seedlings were influenced by endophyte application. Thus, the coastal desert-adapted microbiome of wild Poaceae could alleviate abiotic stress and promote growth in cultivated species of Poaceae, such as wheat.


Assuntos
Bacillus licheniformis , Bacillus , Microbiota , Triticum , Poaceae , Plantas Tolerantes a Sal , Endófitos , Cloreto de Sódio , Estresse Salino , Bacillus subtilis
9.
PLoS One ; 19(4): e0297217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635692

RESUMO

This study focuses on isolated thermophilic Bacillus species' adaptability and physiological diversity, highlighting their ecological roles and potential industrial applications. We specifically investigated their capacity to thrive in extreme conditions by examining their environmental tolerances and adaptations at the metabolic and genetic levels. The primary objective is to evaluate the suitability of these species for biotechnological applications, considering their resilience in harsh environments. We conducted a comparative analysis of the environmental adaptability parameters for various Bacillus species. This included examining growth temperature ranges, pH tolerance, oxygen requirements, carbohydrate fermentation patterns, colony morphology, enzymatic activities, and genetic properties. Controlled laboratory experiments provided the data, which were then analyzed to determine patterns of adaptability and diversity. The research revealed that Bacillus species could endure temperatures as high as 73°C, with a generally lower growth limit at 43°C. However, strains TBS35 and TBS40 were exceptions, growing at 37°C. Most strains preferred slightly alkaline conditions (optimal pH 8), but TBS34, TBS35, and TBS40 exhibited adaptations to highly alkaline environments (pH 11). Oxygen requirement tests classified the species into aerobic, anaerobic, and facultative aerobic categories. Genetic analysis highlighted variations in DNA concentrations, 16s rRNA gene lengths, and G+C content across species. Although glucose was the primary substrate for carbohydrate fermentation, exceptions indicated metabolic flexibility. The enzymatic profiles varied, with a universal absence of urease and differences in catalase and oxidase production. Our findings underscore thermophilic Bacillus species' significant adaptability and diversity under various environmental conditions. Their resilience to extreme temperatures, pH levels, varied oxygen conditions, and diverse metabolic and genetic features emphasize their potential for biotechnological applications. These insights deepen our understanding of these species' ecological roles and highlight their potential industrial and environmental applications.


Assuntos
Bacillus , RNA Ribossômico 16S/genética , Temperatura Alta , Oxigênio , Carboidratos , Filogenia
10.
J Hazard Mater ; 470: 134254, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615644

RESUMO

The existence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has been a global public environment and health issue. Due to the different cell structures, gram-positive/negative ARB exhibit various inactivation mechanisms in water disinfection. In this study, a gram-negative ARB Escherichia coli DH5α (E. coli DH5α) was used as a horizontal gene transfer (HGT) donor, while a gram-positive ARB Bacillus as a recipient. To develop an efficient and engineering applicable method in water disinfection, ARB and ARGs removal efficiency of Fe(VI) coupled peroxydisulfate (PDS) or peroxymonosulfate (PMS) was compared, wherein hydroxylamine (HA) was added as a reducing agent. The results indicated that Fe(VI)/PMS/HA showed higher disinfection efficiency than Fe(VI)/PDS/HA. When the concentration of each Fe(VI), PMS, HA was 0.48 mM, 5.15 log E. coli DH5α and 3.57 log Bacillus lost cultivability, while the proportion of recovered cells was 0.0017 % and 0.0566 %, respectively, and HGT was blocked. Intracellular tetA was reduced by 2.49 log. Fe(IV) and/or Fe(V) were proved to be the decisive reactive species. Due to the superiority of low cost as well as high efficiency and practicality, Fe(VI)/PMS/HA has significant application potential in ARB, ARGs removal and HGT inhibition, offering a new insight for wastewater treatment.


Assuntos
Transferência Genética Horizontal , Ferro , Peróxidos , Peróxidos/química , Ferro/química , Purificação da Água/métodos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Desinfecção/métodos , Sulfatos/química , Antibacterianos/farmacologia , Antibacterianos/química , Bacillus/genética , Bacillus/efeitos dos fármacos , Bacillus/metabolismo
11.
Commun Biol ; 7(1): 434, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594357

RESUMO

Beneficial microorganisms for corals (BMCs), or probiotics, can enhance coral resilience against stressors in laboratory trials. However, the ability of probiotics to restructure the coral microbiome in situ is yet to be determined. As a first step to elucidate this, we inoculated putative probiotic bacteria (pBMCs) on healthy colonies of Pocillopora verrucosa in situ in the Red Sea, three times per week, during 3 months. pBMCs significantly influenced the coral microbiome, while bacteria of the surrounding seawater and sediment remained unchanged. The inoculated genera Halomonas, Pseudoalteromonas, and Bacillus were significantly enriched in probiotic-treated corals. Furthermore, the probiotic treatment also correlated with an increase in other beneficial groups (e.g., Ruegeria and Limosilactobacillus), and a decrease in potential coral pathogens, such as Vibrio. As all corals (treated and non-treated) remained healthy throughout the experiment, we could not track health improvements or protection against stress. Our data indicate that healthy, and therefore stable, coral microbiomes can be restructured in situ, although repeated and continuous inoculations may be required in these cases. Further, our study provides supporting evidence that, at the studied scale, pBMCs have no detectable off-target effects on the surrounding microbiomes of seawater and sediment near inoculated corals.


Assuntos
Antozoários , Bacillus , Microbiota , Probióticos , Vibrio , Animais , Antozoários/microbiologia
12.
Food Res Int ; 184: 114215, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609213

RESUMO

The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.


Assuntos
Bacillus , Esporos Bacterianos , Esporos Bacterianos/genética , Bactérias , Cognição , Gema de Ovo
13.
PLoS One ; 19(4): e0294474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558002

RESUMO

The growing prevalence of antibiotic resistance has made it imperative to search for new antimicrobial compounds derived from natural products. In the present study, Brevibacillus laterosporus TSA31-5, isolated from red clay soil, was chosen as the subject for conducting additional antibacterial investigations. The fractions exhibiting the highest antibacterial activity (30% acetonitrile eluent from solid phase extraction) were purified through RP-HPLC. Notably, two compounds (A and B) displayed the most potent antibacterial activity against both Escherichia coli and Staphylococcus aureus. ESI-MS/MS spectroscopy and NMR analysis confirmed that compound A corresponds to brevicidine and compound B to brevibacillin. Particularly, brevicidine displayed notable antibacterial activity against Gram-negative bacteria, with a minimum inhibitory concentration (MIC) range of 1-8 µg/mL. On the other hand, brevibacillin exhibited robust antimicrobial effectiveness against both Gram-positive bacterial strains (MIC range of 2-4 µg/mL) and Gram-negative bacteria (MIC range of 4-64 µg/mL). Scanning electron microscopy analysis and fluorescence assays uncovered distinctive morphological alterations in bacterial cell membranes induced by brevicidine and brevibacillin. These observations imply distinct mechanisms of antibacterial activity exhibited by the peptides. Brevicidine exhibited no hemolysis or cytotoxicity up to 512 µg/mL, comparable to the negative control. This suggests its promising therapeutic potential in treating infectious diseases. Conversely, brevibacillin demonstrated elevated cytotoxicity in in vitro assays. Nonetheless, owing to its noteworthy antimicrobial activity against pathogenic bacteria, brevibacillin could still be explored as a promising antimicrobial agent.


Assuntos
Anti-Infecciosos , Bacillus , Brevibacillus , Espectrometria de Massas em Tandem , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
14.
J Agric Food Chem ; 72(15): 8674-8683, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569079

RESUMO

The enhancement of intracellular glutamate synthesis in glutamate-independent poly-γ-glutamic acid (γ-PGA)-producing strains is an essential strategy for improving γ-PGA production. Bacillus tequilensis BL01ΔpgdSΔggtΔsucAΔgudB:P43-ppc-pyk-gdhA for the efficient synthesis of γ-PGA was constructed through expression of glutamate synthesis features of Corynebacterium glutamicum, which increased the titer of γ-PGA by 2.18-fold (3.24 ± 0.22 g/L) compared to that of B. tequilensis BL01ΔpgdSΔggtΔsucAΔgudB (1.02 ± 0.11 g/L). To further improve the titer of γ-PGA and decrease the production of byproducts, three enzymes (Ppc, Pyk, and AceE) were assembled to a complex using SpyTag/Catcher pairs. The results showed that the γ-PGA titer of the assembled strain was 31.31% higher than that of the unassembled strain. To further reduce the production cost, 25.73 ± 0.69 g/L γ-PGA with a productivity of 0.48 g/L/h was obtained from cheap molasses. This work provides new metabolic engineering strategies to improve the production of γ-PGA in B. tequilensis BL01. Furthermore, the engineered strain has great potential for the industrial production of γ-PGA from molasses.


Assuntos
Bacillus , Corynebacterium glutamicum , Ácido Poliglutâmico/análogos & derivados , Ácido Glutâmico/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo
15.
Environ Microbiol Rep ; 16(2): e13250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575119

RESUMO

The rhizosphere and phyllosphere of plants are home to a diverse range of microorganisms that play pivotal roles in ecosystem services. Consequently, plant growth-promoting bacteria (PGPB) are extensively utilized as inoculants to enhance plant growth and boost productivity. Despite this, the interactions between the rhizosphere and phyllosphere, which are influenced by PGPB inoculation, have not been thoroughly studied to date. In this study, we inoculated Bacillus velezensis SQR9, a PGPB, into the bulk soil, rhizosphere or phyllosphere, and subsequently examined the bacterial communities in the rhizosphere and phyllosphere using amplicon sequencing. Our results revealed that PGPB inoculation increased its abundance in the corresponding compartment, and all treatments demonstrated plant growth promotion effects. Further analysis of the sequencing data indicated that the presence of PGPB exerted a more significant impact on bacterial communities in both the rhizosphere and phyllosphere than in the inoculation compartment. Notably, the PGPB stimulated similar rhizosphere-beneficial microbes regardless of the inoculation site. We, therefore, conclude that PGPB can promote plant growth both directly and indirectly through the interaction between the rhizosphere and phyllosphere, leading to the enrichment of beneficial microorganisms.


Assuntos
Bacillus , Ecossistema , Rizosfera , Raízes de Plantas/microbiologia , Bactérias/genética , Microbiologia do Solo
16.
Sci Rep ; 14(1): 9469, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658583

RESUMO

Bovine mastitis caused by S. aureus has a major economic impact on the dairy sector. With the crucial need for new therapies, anti-virulence strategies have gained attention as alternatives to antibiotics. Here we aimed to identify novel compounds that inhibit the production/activity of hemolysins, a virulence factor of S. aureus associated with mastitis severity. We screened Bacillus strains obtained from diverse sources for compounds showing anti-hemolytic activity. Our results demonstrate that lipopeptides produced by Bacillus spp. completely prevented the hemolytic activity of S. aureus at certain concentrations. Following purification, both iturins, fengycins, and surfactins were able to reduce hemolysis caused by S. aureus, with iturins showing the highest anti-hemolytic activity (up to 76% reduction). The lipopeptides showed an effect at the post-translational level. Molecular docking simulations demonstrated that these compounds can bind to hemolysin, possibly interfering with enzyme action. Lastly, molecular dynamics analysis indicated general stability of important residues for hemolysin activity as well as the presence of hydrogen bonds between iturins and these residues, with longevous interactions. Our data reveals, for the first time, an anti-hemolytic activity of lipopeptides and highlights the potential application of iturins as an anti-virulence therapy to control bovine mastitis caused by S. aureus.


Assuntos
Bacillus , Proteínas Hemolisinas , Hemólise , Lipopeptídeos , Simulação de Acoplamento Molecular , Staphylococcus aureus , Bacillus/metabolismo , Bacillus/química , Staphylococcus aureus/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Animais , Bovinos , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Proteínas Hemolisinas/antagonistas & inibidores , Proteínas Hemolisinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Feminino , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Simulação de Dinâmica Molecular
17.
BMC Genomics ; 25(1): 399, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658836

RESUMO

BACKGROUND: Endophytic bacteria possess a range of unique characteristics that enable them to successfully interact with their host and survive in adverse environments. This study employed in silico analysis to identify genes, from Bacillus sp. strain MHSD_37, with potential biotechnological applications. RESULTS: The strain presented several endophytic lifestyle genes which encode for motility, quorum sensing, stress response, desiccation tolerance and root colonisation. The presence of plant growth promoting genes such as those involved in nitrogen fixation, nitrate assimilation, siderophores synthesis, seed germination and promotion of root nodule symbionts, was detected. Strain MHSD_37 also possessed genes involved in insect virulence and evasion of defence system. The genome analysis also identified the presence of genes involved in heavy metal tolerance, xenobiotic resistance, and the synthesis of siderophores involved in heavy metal tolerance. Furthermore, LC-MS analysis of the excretome identified secondary metabolites with biological activities such as anti-cancer, antimicrobial and applications as surfactants. CONCLUSIONS: Strain MHSD_37 thereby demonstrated potential biotechnological application in bioremediation, biofertilisation and biocontrol. Moreover, the strain presented genes encoding products with potential novel application in bio-nanotechnology and pharmaceuticals.


Assuntos
Bacillus , Endófitos , Endófitos/genética , Bacillus/genética , Bacillus/metabolismo , Biotecnologia , Simulação por Computador , Genoma Bacteriano , Metabolismo Secundário/genética , Sideróforos/metabolismo
18.
Curr Microbiol ; 81(6): 142, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625396

RESUMO

The present work aims to quantitatively and qualitatively monitor the production of lipopeptide mixtures by Bacillus methylotrophicus DCS1 strain in Landy medium and to investigate the antifungal activities of DCS1 strain and its produced lipopeptides. The in vitro activities were tested by the direct confrontation and agar well diffusion methods, while the in vivo study was carried out in order to test the efficiency of DCS1 bacterial suspension in the control of Fusarium wilt in tomato plants. Identification of lipopeptides by mass spectrometry (LC/MSD-TOF) showed that lipopeptide isoforms produced during the first 24 h and 48 h of fermentation are identical, belonging to bacillomycin D and fengycins A and B homologues with a difference in the yield of production. After 72 h of fermentation corresponding to the end of incubation period, B. methylotrophicus DCS1 is able to produce a mixture of surfactin, pumilacidin, iturin A/mycosubtilin, iturin C1, bacillomycin D and fengycins A and B isoforms. The results of in vitro antifungal experiments suggest that B. methylotrophicus DCS1 has a significant potential as a biocontrol agent, owing to lipopeptides produced, endowed with antifungal activity against several phytopathogenic fungi. The curative treatment of tomato plants with DCS1 bacterial suspension was more effective in the protection against Fusarium oxysporum f. sp. radicis-lycopersici (FORL) than the preventive treatment by comparing the average number of leaves remaining healthy after 30 days of each treatment and the appearance of tomato plants roots. The results indicate that B. methylotrophicus DCS1 exhibit a significant suppression of Fusarium wilt symptoms in tomato plants comparable to that of commercial fungicides and could be an alternative to chemically synthesized pesticides.


Assuntos
Bacillus , Fusarium , Solanum lycopersicum , Antifúngicos/farmacologia , Lipopeptídeos/farmacologia , Isoformas de Proteínas
19.
Food Microbiol ; 121: 104497, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637068

RESUMO

Daqu is a saccharification agent required for fermenting Baijiu, a popular Chinese liquor. Our objective was to investigate the relationships between physicochemical indices, microbial community diversity, and metabolite profiles of strong-flavor Jinhui Daqu during different storage periods. During different storage periods of Jinhui Daqu, we combined Illumina MiSeq sequencing and non-target sequencing techniques to analyze dynamic changes of the microbial community and metabolite composition, established a symbiotic network and explored the correlation between dominant microorganisms and differential metabolites in Daqu. Fungal community diversity in 8d_Daqu was higher than that in 45d_Daqu and 90d_Daqu, whereas bacterial community diversity was higher in 90d_Daqu. Twelve bacterial and four fungal genera were dominant during storage of Daqu. Bacillus, Leuconostoc, Kroppenstedtia, Lactococcus, Thermomyces and Wickerhamomyces decreased as the storage period increased. Differences of microbiota structure led to various metabolic pathways, and 993 differential metabolites were found in all Daqu samples. Differential microorganisms were significantly related to key metabolites. Major metabolic pathways involved in the formation of amino acids and lipids, such as l-arogenate and hydroxyproline, were identified. Interactions between moisture, acidity, and microbes may drive the succession of the microbial community, which further affects the formation of metabolites.


Assuntos
Bacillus , Microbiota , Fermentação , Bactérias , Metaboloma
20.
Food Microbiol ; 121: 104498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637069

RESUMO

Organic acids are widely used in foodstuffs to inhibit pathogen and spoiler growth. In this study, six organic acids (acetic, lactic, propionic, phenyllactic, caprylic, and lauric acid) and monolaurin were selected based on their physicochemical properties: their molecular structure (carbon chain length), their lipophilicity (logP), and their ability to dissociate in a liquid environment (pKa). The relation between these physicochemical properties and the inhibitory efficacy against B. weihenstephanensis KBAB4 growth was evaluated. After assessing the active form of these compounds against the strain (undissociated, dissociated or both forms), their MIC values were estimated in nutrient broth at pH 6.0 and 5.5 using two models (Lambert & Pearson, 2000; Luong, 1985). The use of two models highlighted the mode of action of an antibacterial compound in its environment, thanks to the additional estimation of the curve shape α or the Non-Inhibitory Concentration (NIC). The undissociated form of the tested acids is responsible for growth inhibition, except for lauric acid and monolaurin. Moreover, long-carbon chain acids have lower estimated MICs, compared to short-chain acids. Thus, the inhibitory efficacy of organic acids is strongly related to their carbon chain length and lipophilicity. Lipophilicity is the main mechanism of action of a membrane-active compound, it can be favored by long chain structure or high pKa in an acid environment like food.


Assuntos
Bacillus , Lauratos , Monoglicerídeos , Monoglicerídeos/farmacologia , Monoglicerídeos/química , Ácidos , Ácidos Láuricos/farmacologia , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...